
MMI1 Algorithmique. Javascript. 2024/2025

faire un jeu en javascript/HTML5

D’abord quelques exemples de ce que l’on peut faire :

http://www.playescapegoat.com/
http://hexgl.bkcore.com/
https://developer.mozilla.org/fr/demos/detail/bananabread

1 La balise canvas ; fonctions de dessin
On utilisera une balise canvas, apparue avec HTML5, qui est une surface de pixels sur laquelle on peut dessiner

des formes géométriques, des textes, des images, etc... La partie algorithmique (dessiner, faire des animations dans le
canvas...) est gérée par javascript.

1. Fonctions de dessin sur le canvas :
Nous devons, avant de voir comment réaliser un petit jeu 2D, voir quelle sont les fonctions permettant de
dessiner, de charger des images, etc... Pour cela je vous laisse suivre ce tutoriel jusqu’à la partie 4 (les images).
La partie sur les dégradés nous intéresse moins mais vous pouvez la faire quand-même si vous le souhaitez.

https://www.alsacreations.com/tuto/lire/1484-introduction.html

En résumé vous devez savoir après cela :
— Récupérer le contexte graphique du canvas d’id canvas : ctx=document.getElementById(’canvas’).getContext("2d");
— Dessiner des formes simples et des images à l’aide des méthodes de ctx :

beginPath(), moveTo(x,y), lineTo(x,y), closePath(), stroke(), fill(),
fillRect(x,y,hauteur,largeur), clearRect(x,y,hauteur,largeur), arc(x,y,rayon,angle1,angle2,boolSens),
bezierCurveTo(x1,y1,x2,y2,x3,y3), quadraticCurveTo(x1,y1,x2,y2),
drawImage(img,x,y)
et des propriétés de ctx :
fillStyle,strokeStyle, lineWidth, lineJoin, lineCap,
miterLimit, shadowOffsetX, shadowOffsetY, shadowBlur, shadowColor, ...

— Faire des dégradés.
2. Exercice : dessiner sur le canvas, en trait rouge épais, MMI grâce aux fonctions lineTo(), moveTo(), stroke(),

etc... Rajoutez au dessus de cela une image de votre choix (utilisation de drawImage()).

2 Animation d’une image à l’aide de rotate() et translate()
Ces deux fonctions sont des méthodes de l’objet ctx, le contexte graphique. Elles agissent sur le contexte graphique

lui-même, qu’elle permettent de translater ou de tourner d’une certaine quantité. Ainsi si l’on tourne grâce à rotate()
le contexte graphique du canvas de −π

4 radians, et que l’on trace ensuite une image en (0,0) elle doit apparaître en
haut à gauche (son coin haut gauche tout en haut à gauche du canvas), tournée de −π

4 radians.

Notez que vous disposez également de la méthode scale() pour redimensionner le contexte graphique du canvas.

A tout moment vous pouvez sauver le contexte graphique dans un état donné (couleur de la ligne, épaisseur, angle
et position...) grâce à la méthode save() de ctx et le restaurer par la suite dans le même état grâce à la méthode
restore().

1. Créez une page web comprenant un élément canvas. Vous pouvez prendre le fichier index.htm sur moodle et le
fichier css associé main.css.

2. Dans un fichier intitulé js.js, on va afficher une image dans le canvas et l’animer. Le principe est de créer
une image et quand elle charge (onload), on lui associe une fonction boucle() que l’on relance toutes les fps
secondes (à l’aide de setInterval()). Celle-ci redessine l’image, mais dans une position nouvelle... Cherchez
d’abord à afficher une image dans le canvas, sans qu’elle ne bouge (pas besoin de setInterval() à cette étape,
donc). Une image (mario..) est disponible sur moodle, mais vous pouvez choisir l’image que vous voulez.

3. Maintenant, cherchez à faire en sorte que cette image soit progressivement translatée vers la droite.
4. Faites s’arrêter l’image du personnage sur le bord droit. Puis faites la rebondir sur les bords.
5. Arrêtez le mouvement du personnage, et essayez de l’afficher au milieu du canvas, essayez ensuite de l’afficher

tourné de −π
4 radians en (0,0), puis (0,10), puis (0,50) etc... pour comprendre comment fonctionnent les fonctions

translate() et rotate(). Il faut faire cette question en utilisant ces deux fonctions.
6. Enfin, essayez de faire en sorte que l’image tourne sur elle-même tout en avançant. Essayez de la faire grossir

quand elle va vers la droite, rapetisser quand elle va vers la gauche (il faut utiliser .scale()).

MMI1 Algorithmique. Javascript. 2024/2025

3 Gestion des événements clavier
Un fichier javascript class.clavier.js vous est donné ; cela permet de créer des objets de type Clavier possédant

des propriétés haut, bas, droite, gauche valant true si l’on va dans la appuie sur la flèche correspondante ; ces valeurs sont
repositionnées à false dés que l’utilisateur relève le doigt.Utilisez ce fichier pour animer votre personnage au cla-
vier (en incrémentant sa position en fonction de la touche sur laquelle on a appuyé...). Il suffit d’instancier un objet de la
classe Clavier (var clavier = new Clavier();). Ensuite on peut utiliser l’objet clavier pour savoir si l’on a appuyé
sur une ou plusieurs touches directionnelles... ({if (clavier.droite){ // Ici ce qu’on fait quand on a appuyé sur la flèche droite}

4 Les sprites
Arrivé à ce point, votre personnage peut bouger, dans chacune des directions, en étant contrôlé au clavier. Toutefois

il reste fixe... Une des images qui vous est donnée sur e-campus représente une ”sprite sheet”, une feuille d’icônes
présentant les différentes positions du personnage (mario) qui sera utilisé. Votre objectif ici est d’utiliser celle-ci pour
animer votre personnage. Vous observez que cette image comprend plusieurs lignes, une ligne correspondant à une des
directions selon laquelle le personnage peut se déplacer, et plusieurs colonnes, correspondant aux différentes positions
successives qu’aura notre personnage au cours de son déplacement. Vous devez :

1. Apprendre à utiliser drawImage() plus finement. Jusqu’ici vous utilisiez 3 ou 5 paramètres d’entrée, maintenant,
il faudra en utiliser 7 ou 9. On ne voudra en effet pas afficher toute l’image, mais seulement une partie de l’image,
correspondant à la position du personnage. Les 4 paramètres supplémentaires permettent de définir quelle partie
(un rectangle défini par son point haut gauche et ses dimensions...) de l’image on souhaite afficher. Apprenez
à utiliser drawImage(). Pour cela chercher, sans l’animer pour l’instant, à afficher mario, dans l’une ou l’autre
des positions définies sur la sprite sheet.

2. Ceci fait, faites en sorte que mario, quand il va à droite et en haut, se déplace en utilisant les positions successives
définies dans la sprite sheet. Pour cela, il faudra utiliser deux variables : l’une, positionnée en fonction de la
touche sur laquelle le joueur a appuyé, permettra de choisir à quelle ligne on va chercher la position adéquate.
La deuxième permet de choisir la colonne, à savoir la position du personnage. Cette variable s’incrémente à
chaque déplacement et revient à 0 quand elle dépasse le nombre maximum de positions disponibles (8 ici).

3. Que faire pour la gauche ? Il n’y a pas de position définie pour aller à gauche... Il suffit en fait de prendre les
images de mario allant vers la droite et de retourner le repère (ctx.scale(-1,1)). On peut s’aider d’un booléen
qui dit dans quel sens le repère doit être dessiné...

5 gestion des sauts
Pour gérer les sauts, on peut utiliser un booléen (appelons-le saut), qui vaut false en temps normal et true

dès qu’on appuie sur la flèche haute. On utilisera également une variable compteur qu’on mettra, par exemple, à 40
au début du saut et qu’on fera décroître d’un en un à chaque nouveau passage dans la fonction boucle(). Lorsque
ce compteur revient à 0, on remet saut à false. On utilise enfin une variable posy qui gère la position verticale du
personnage et dont la valeur dépend du compteur de saut. Il faut qu’au sommet du saut (donc quand le compteur
vaut 20), posy soit minimal (posy sera négatif, car si l’on souhaite sauter vers le haut, il faut penser que les ordonnées
sont d’autant plus petites qu’on est haut dans le canvas...). On peut par exemple utiliser la fonction x 7→ −x2 ou
encore x 7→ −x4. posy vaudra alors par exemple 100-(20-compt_saut)*(20-compt_saut)/4. Si l’on ne veut pas
que le personnage saute verticalement, il faut également penser à incrémenter posx (si l’on va vers la droite) ou le
décrémenter (si l’on va vers la gauche), quand le compteur de saut n’est pas nul. Il faut également éviter de remettre
le compteur de saut à 40 à chaque appui sur la flèche haute ; le saut ne se déclenchera que si l’on appuie vers le haut
ET que saut n’est pas déjà à true (ou que le compteur de saut vaut 0). Mettez en place ce système ; testez également
avec d’autres fonctions, comme x 7→ −x4. Essayez de faire sauter moins haut votre personnage, ou plus haut.

6 Défilement du paysage
On dispose d’au moins deux drawImage(), l’un pour le fond, l’autre pour le personnage. On peut vouloir :
— Déplacer le personnage dans un décor fixe. On a vu comment faire : on trace le décor en (0,0), on translate le

repère lié au canvas à l’endroit où l’on souhaite dessiner le personnage (et cette translation dépend d’une ou
deux variables posx et posy dont la valeur évolue à chaque nouveau passage dans la fonction boucle()), on
dessine le personnage, on remet le repère à sa place initiale.

— Que le décor défile continûment : il faut alors translater le repère (de plus en plus vers la gauche si l’on veut
avoir l’impression que le personnage défile vers la droite) avant de tracer le décor. On peut ensuite remettre en
place le repère et tracer le personnage.

— Que le décor défile quand le personnage arrive, par exemple, tout à fait à droite : le décor défile vers la gauche,
le personnage se retrouve à gauche du canvas, plus loin dans l’image de fond (cf les premiers Zelda par ex). Pour
cela, il nous faut une variable defil qui indique à quel niveau de défilement on en est (si posX est supérieur
à (la largeur du canvas -la largeur du personnage)*(defil+1) on augmente defil... Inversement si posx < defil
(largeur du canvas - largeur du personnage) on décrémente defil... On peut également utiliser un compteur,

MMI1 Algorithmique. Javascript. 2024/2025

qu’on met à 40 à chaque fois qu’on augmente defil, et qui sert à faire défiler progressivement le fond vers la
gauche. Essayez de mettre en place ce système.

7 gestion des collisions
Arrivé ici, tout doit marcher, sauf que s’il y a une image de fond, le personnage peut traverser les obstacles, dépas-

ser du canvas... Vous pouvez déjà essayer de l’empêcher de sortir du canvas (à l’aide de conditionnelles, on bloque le
mouvement du personnage au delà d’une certaine position). Mais on ne peut pas multiplier les if()... Il nous faut donc
des méthodes plus sophistiquées.

Dans le cas d’une collision avec le pointeur de souris (ou veut détecter quand le pointeur de souris entre ou non
dans une zone donnée) : on peut utiliser le canal alpha (la transparence), en faisant en sorte que les obstacles aient
une transparence différente de ce qui n’est pas obstacle. En jquery, il nous faut utiliser la fonction getImageData()
pour récupérer les informations des pixels (R,V,B,A) dessinés sur un canvas. Exemple :

$(’#canvas’).mousemove(function(evt) {
souris.x = evt.pageX; // - éventuellement une certaine quantité dépendant de la pos du canvas dans le document
souris.y = evt.pageY; // on peut utiliser la fonction jquery offset() ...

image_data = ctx.getImageData(souris.x, souris.y, 1, 1); // Récupération d’un seul pixel
pixel = image_data.data;
if (pixel[3]<98) { // si la transparence de ce pixel est < 98...

}
});

Mais pour la collision entre un personnage et un obstacle dans le cas de l’utilisation d’une grande image pour le
fond, on utilise d’autres méthodes. Il est possible, à l’aide de toute une série de conditionnelles (if..) d’empêcher le
personnage d’aller dans certaines zones du canvas (en bloquant le déplacement si l’on voit que celui-ci le mêne dans un
obstacle). Une gestion plus propre sera vue en TD, on utilisera une classe Obstacle contenant des méthodes permettant
de détecter des collisions point/rectangle et rectangle/rectangle (ce qui nous intéresse a priori, le personnage étant une
image rectangulaire, et les obstacles étant souvent des rectangles).

1. Si ce n’est pas fait, essayer d’empêcher le personnage de dépasser du canvas (à l’aide de simples if)
2. On va maintenant utiliser la classe obstacle, que je vous donne sur e-campus. Elle est écrite en orienté objet,

il faudra donc créer des instances de la classe Obstacle (ex : var o= new Obstacle(100,100,100,50);) et
ensuite ces instances pourront utiliser les méthodes de la classe obstacle (ex : o.collision(100,20,20,10)
pour tester une collision entre o, un obstacle rectangulaire, et un autre rectangle, le personnage, défini par les
paramètres d’entrée). En aucun cas on ne peut appeler directement collision()... Je vous fournis également une
image de fond toute simple, rectangle.png, fond blanc avec deux rectangles noirs. Faites en sorte que Mario se
déplace avec cette image comme fond.

3. Faites s’afficher, à tout moment, la position de mario dans la console (par rapport au coin haut gauche de
l’image de fond). Rappel : console.log() permet d’écrire dans la console...

4. collision point-rectangle : on utilise ici la classe Obstacle. On utilise les méthodes getDistanceX() et
getDistanceY() de cette classe. Ces deux méthodes donnent respectivement les distances horizontale (suivant
les abscisses) et verticale (suivant les ordonnées) entre le point passé en paramètre et l’objet appelant (l’obstacle).
Créez deux instances de la classe obstacle correspondant aux deux rectangles noirs. A l’aide des deux méthodes
décrites ici, empêchez le mouvement du personnage s’il s’approche d’un obstacle (distance nulle dans une des
directions et trop petite dans l’autre...).

5. collision rectangle-rectangle : on utilise la méthode collision(). Elle renvoie un booléen qui vaut true si
les deux rectangles - l’objet appelant et celui défini par les paramètres d’entrée - se chevauchent, false sinon.
C’est ce qui nous servira le plus souvent, le personnage et les obstacles étant souvent tous deux des rectangles...
Utilisez cette méthode pour bloquer le déplacement de votre personnage près des deux rectangles.

6. Faites la même chose, mais les obstacles sont cette fois tous ajoutés dans un tableau obstacles qui contiendra
tous les obstacles. Les tests de collision se font donc grâce à une boucle for qui parcourt ce tableau et vérifie
que le personnage ne rencontrera aucun obstacle. En pratique, les obstacles sont souvent définis dans un fichier
(texte, xml, ...).

Contraintes du jeu (2024/2025)
Vous devez créer un jeu en vous appuyant sur ce qui a été vu. Une correction vous est remise. Votre jeu devra être

rendu lundi 19 décembre 2024 au plus tard et respecter les contraintes suivantes :
1. Le jeu doit être absolument basé sur ce qui a été vu en cours, je dois reconnaître la structure de ce qui vous a

été donné (setInterval, fonction boucle,).

MMI1 Algorithmique. Javascript. 2024/2025

2. Le jeu ne doit pas se passer dans le monde de Mario : il faudra changer de fond et de personnage ! Il faut utiliser
les fonds faits avec M. Clech. Il doit donc y avoir plusieurs couches de fond qui glissent à des vitesses différentes.
Il faut utiliser une spritesheet. Vous pouvez récupérer des images sur internet, vous n’êtes pas obligés de les
créer. Attention, certaines spritesheets disponibles sur internet sont mal conçues et poseront problèmes (les
vignettes doivent être dans une grille avec des cases qui ont toutes la même largeur et même hauteur).

3. Votre jeu doit être hébergé sur o2switch (ou ailleurs d’ailleurs si vous avez un autre hébergeur). Il faut rendre
dans l’espace que je vais créer sur moodle un rapport pdf d’une page ou deux expliquant de façon très générale
ce que vous avez réussi à faire et pas réussi à faire et dans lequel vous faites le bilan de votre travail. Il faut
donner le lien où tester le jeu.

4. A préciser...
Barème : non respect de la contrainte 1. : 0. Originalité sur 6, jouabilité/fonctionnement sur 6 (est-ce que le jeu est
fluide, ne bloque pas à certains endroits, est-ce qu’il est intéressant ...), avancement technique sur 8 (plus votre jeu
met en oeuvre des concepts avancés plus la note est proche de 8).

